The Value of Natural Climate Solutions in Minnesota

ACES | December 12, 2024

Presenter: Erin Mackey, Earth Economics emackey@eartheconomics.org

Earth Economics is a leader in ecological economics. We quantify and value the benefits nature provides.

Natural Climate Solutions Implementation Strategy in Minnesota

Nature & Climate Report Influence

- Addresses mitigation and adaptation
- Elevated at MN legislature
- Initiated the "Minnesota Million" conversation
- Led to State emphasis & inclusion of natural and working lands in official Climate Framework
- Utilized by partners to improve understanding of nature's climate impact

THE ECONOMIC BENEFITS OF NATURAL CLIMATE SOLUTIONS IN MINNESOTA

Why Minnesota?

- 1% of historic prairie remainsⁱ
- 1M acres of peatlands drained in last 100 yrsⁱⁱ
- Lost half of forests since European settlementⁱⁱⁱ

Minnesota Prairie Plan Working Group. 2018. Minnesota Prairie Conservation Plan, 2nd Edition. https://files.dnr.state.mn.us/eco/mcbs/mn_prairie_conservation_plan.pdf.

ⁱⁱ Krause, L. et al. (2021) Impacts of historical ditching on peat volume and carbon in northern Minnesota USA peatlands. *Journal of Environmental Management* 296. https://doi.org/10.1016/j.jenvman.2021.113090

ⁱⁱⁱ Minnesota Department of Natural Resources. 2008. Chapter Five: Forests Today. In: All About Minnesota's Forests and Trees. https://files.dnr.state.mn.us/forestry/education/primer/chapterfive.pdf.

Natural Climate Solutions in Minnesota

CROPLANDS

Key Goals

Spatial Analysis

Economic Analyses:

- Ecosystem Services Valuation (ESV)
- Economic Contribution Analysis
- Benefit-Cost Analysis

MIN and MAX Implementation Levels

Methodology Spatial Analysis

- **Goal:** Avoid 2 practices valued for the same acre
- **Some Assumptions:**
- Avoided Conversion > Restoration
- Avoided Peat Conversion > Avoided Wetland Conversion
- Peat Restoration > Wetland Restoration
- Restoration & Conservation > Non-Prime Farmland

Figure 4. Hypothetical restoration scenario in the Redeye River watershed, for illustrative purposes only.

Pre-Implementation Scenario Land Cover

Post-Implementation Scenario Land Cover

Sources: USGS, Esri, U.S. Census Bureau © 2023 Earth Economics

Methodology ESV

Ecosystem Services	Landcover types					
	Forest	Grassland	Wetland	Peatland	Cropland*	KEV
Aesthetic Information	\checkmark		\checkmark	\checkmark		
Air Quality	\checkmark	\checkmark	\bigcirc			\checkmark = present,
Biological Control	\bigcirc	\bigcirc	\bigcirc		\checkmark	
Carbon Storage	\checkmark	\bigcirc	\bigcirc	0	\bigcirc	o – present,
Carbon Sequestration	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Climate Stability	\checkmark	\bigcirc	\bigcirc	0		
Disaster Risk Reduction	\checkmark	\bigcirc	\bigcirc	\bigcirc		
Habitat	\bigcirc	\bigcirc	\checkmark	\checkmark		
Recreation & Tourism	\checkmark	\checkmark	\checkmark	\checkmark		
Soil Quality	\bigcirc	\bigcirc	\bigcirc	0	\checkmark	
Soil Retention	\bigcirc	\bigcirc	\checkmark	\checkmark	\bigcirc	
Water Capture, Conveyance, Supply	\checkmark	\bigcirc	\bigcirc	0	\checkmark	
Water Quality	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

ECONOMIC CONTRIBUTION: IMPLAN INPUT-OUTPUT MODEL

RESULTS

HABITAT VALUE

FORESTS

\$4.5 BILLION per year

in ecosystem services preserved by avoided conversion

\$32 BILLION per year in ecosystem services generated by reforestation

GRASSLANDS

\$3.8 MILLION per year in ecosystem services preserved by avoided conversion

\$65 MILLION per year

in ecosystem services generated by restoration

WETLANDS + PEATLANDS

\$114 MILLION per year in ecosystem services preserved by avoided conversion

\$210 MILLION per year in ecosystem services generated by restoration

\$73.1 MILLION per year

NATURAL CLIMATE SOLUTIONS INVESTMENTS WOULD SUPPORT*:

For every \$1 invested in the maximum scenario of NCS implementation, Minnesota would receive \$8.55 in public benefits by 2050.

2,700 to 5,200 jobs per year through 2050

\$110 million to \$148 million in wages per year for MN workers through 2050.

\$173 million to \$221 million in annual GDP through 2050.

*Sum of all NCS practices in the minimum to maximum implementation scenarios

DISCUSSION + RECOMMENDATIONS

1. Expanded use of ESV tools

2. Focused Investment in Equity

3. Integration with Financial Instruments

4. Strengthened Public-Private Partnerships

As Minnesota spends millions to restore peatlands, it sells mining rights for \$12 an acre

Peatlands are vital to efforts to control greenhouse gas emissions, and the Minnesota DNR is in charge of both saving them and leasing them to peat mining companies.

By Greg Stanley

The Minnesota Star Tribune

SEPTEMBER 13, 2024 AT 6:47PM

Minnesota voters approve maintaining use of lottery funds to protect the environment

f 🖌 🛛

THE ECONOMIC BENEFITS OF NATURAL CLIMATE SOLUTIONS IN MINNESOTA

Laura Villegas Alice Lin Will Golding Meredith Cornett Sachiko Graber Richard Biske Jessica Blair Neal Feeken Jim Manolis

Acknowledgements

Download the report to learn more nature.org/mnclimate